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Abstract 

A method is presented in which parameters obtained 
from vibrational spectroscopy are used in the least- 
squares refinement of positional and thermal param- 
eters obtained from diffraction data. The method 
involves the calculation of those contributions to the 
temperature factors not well described by the second- 
rank tensor approximation conventionally used in 
crystal structure determinations. Expressions are given 
for the temperature-factor contributions from vibra- 
tional motion on an arc and from anharmonic linear 
motion. The method is applied to the water molecule in 
dipotassium oxalate monohydrate, 2K+.C20; .H20.  
Refinements using vibrational data are compared with 
a conventional refinement; the latter are shown to give 
considerable systematic errors in the geometrical 
parameters for the water molecule. 

Introduction 

The conventional approach to the treatment of thermal 
vibration in crystallographic work is to associate with 
each atom a second-rank vibrational tensor. The 
components of the tensor (B's or fills) are generally 
derived from a least-squares refinement procedure. It is 
not uncommon, however, that inadequacies in this 
approach become apparent in accurate work. Two 
major inadequacies are neglect of non-rectilinear and of 
anharmonic vibrational motion (Fig. 1). Both tend to 
be present to a non-negligible extent for molecular 
crystals, and various approximations have been sug- 
gested to take these into account, e.g. the use of TLS 
tensors (Schomaker & Trueblood, 1968), higher 
cumulants (Johnson, 1969), etc. These have proved 
useful in some cases, but inapplicable in others: 
typically, the rigid-molecule assumption can be at fault 
in the use of TLS tensors, or troublesomely high 
correlations can be encountered in the refinement of 
higher cumulants. 

Particularly severe demands are imposed on the 
adequacy of the vibrational description of a molecule in 
electron density work, where an accurate vibrational 
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model is essential to a successful separation of thermal 
and valence density effects in the data (see, for 
example, Harel & Hirshfeld, 1975). This introduces 
special complications for the case of the water molecule 
in crystal hydrates, where rigid-molecule assumptions 
are patently inappropriate. 

We examine here, therefore, the technical possibility 
of making use of vibrational spectroscopic data for the 
water molecules in a crystal hydrate system to 
ascertain their vibrational motion, and of subsequently 
including this description in a least-squares refinement. 
We illustrate the method in the refinement of single- 
crystal neutron diffraction data for K2C204.H20. It is 
planned to include this procedure in a later electron 
density study of this same compound. 

The method 

We consider here two types of vibrational motion 
where the assumptions implicit in the use of the 
second-rank ~-tensor formalism break down: rotational 
motion where the nucleus moves on an arc and 
anharmonic linear motion. The principle of the method 
here is to derive an explicit description of these two 
types of motion from a normal coordinate analysis 
(NCA) of the vibrational motion of the molecule. The 
NCA makes use of wavenumbers assigned on the basis 

(a) (b) 
Fig. 1. Probability densities for (a) non-rectilinear motion and (b) 

linear anharmonic motion. Both these types of motion are 
convoluted with translational motion to give a two-dimensional 
density. 
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of vibrational spectroscopic data. The result from the 
NCA is primarily the normal modes of vibration. From 
these, vibrational amplitudes are easily calculated (see, 
for example, Cyvin, 1968). 

Let us consider the structure-factor expression as it 
is usually written in the neutron diffraction case: 

F ( H ) =  ~ bkexp(i2nHrk) Tk(H), (1) 
nuclei k 

where bt, is the scattering length, H the scattering 
vector, r k the position and Tk(H ) the temperature 
factor. Introduction of the second-rank 13-tensor for- 
malism gives 

Tk(H) = exp(--2n 2 H~ k H). (2) 

Each normal mode contributes to the temperature 
factor such that it is possible to write the temperature 
factor for a given H as a product: 

Tk(H)= 1-I T~,.(H). (3) 
normal 
modes n 

Our approach is to use the information from the NCA 
to calculate those Tk, n(H ) factors which do not satisfy 
the assumptions implicit in the use of the second-rank 
tensor approximation. This has to be done for certain 
nuclei and normal modes judiciously selected on the 
basis of the NCA. Contributions calculated in this way 
are multiplied into the Tk(H ) calculated using a 
conventional crystallographic computer program which 
refines Pk and rt,. For clarity, the right-hand side of (3) 
can be split conveniently into three parts" 

Tt,(H) = Tk, rer(H) 1-[ Tk,,,(I'I) H Tk, n2(H) • (4) 
n ,  /12 

Tk, ref(H) is refined in the normal way while the factors 
Tk,,,(H) (for motion on an arc) and Tk,,~(H) (for 
anharmonic linear motion) are calculated using the 
appropriate equations [see (5) and (8) belowl. For the 
refinements we have used the computer program 
UPALS (Lundgren, 1979). 

Let us now consider the specific contributions to the 
temperature factors from the two types of motion 
referred to above. 

Motion on an arc 

An expression for temperature factors has been 
given by Willis & Pryor (1975), equation (6.29). Let us 
consider here motion in only one plane, so their 
equation is reduced to 

Tk,,,,(Q) = (1 + iLll aQ3) -1/2 

a 2 Q2/[2(1 + iL, aQ3)]}, (5) × exp{Lll 1 

where Q, with components Q~, Q2 and Q3, is the 
scattering vector in an orthogonal coordinate system 
with nucleus k on axis 3 at a distance a from the 

rotational axis 1 (Fig. 2). L11 is the mean-square 
amplitude of the angle 01. The a values, L11 values and 
the coordinate transformations that give Q], Q2 and Q3 
from h, k and l are obtaiiaed from the NCA. We have 
also applied the approximation to (5) given by Willis & 
Pryor (1975), equation (6.31), here simplified to be 
valid for motion in one plane only: 

= a 2Q2)(I i½L aQ3 Tk,.,(Q) exp(-½L11 - -  1 1  

1 2 a 3 +~LI] a~a3). (6) 

(In the book by Willis & Pryor there is a misprint in the 
last term: L11 appears instead of L]I.) The term 
-i½LllaQ3 (first order in Q) is shown by Willis & 
Pryor to give the correction to the positional param- 
eters r k in (1). 

A nharmonic linear motion 
The temperature factor of a nucleus is given by the 

Fourier transform of its probability density function 
(Willis & Pryor, 1975, § 4.3): 

T~(Q) = f pk(u) exp(iQu) d 3 U, (7) 

where u is a displacement vector and pk(u) is the 
probability density function for nucleus k along the 
vector u. Performing the integration numerically for 
normal mode n2, and choosing the coordinate system 
such that the displacement u is along axis 1, (7) is 
written 

Ub 

Tk..2(Q)= Z Pk(u)exp(iQ, u) Au. (8) 
? . / = U  a 

QI and u are the components of Q and u along axis 1, 
u a and un are summation limits (Fig. 3). The probability 

/ 

Ll l  = <012~ 

~ u c l e u s  

Fig. 2. Coordinate system for a nucleus vibrating on an arc. Axis 1 
is the rotational axis. 

J 

/ 
Ua u b 

eq. pos. 

Fig. 3. Probabil i ty  density function for a nucleus moving  in an 
anharmonic  potential. 
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density function for a hydrogen nucleus taking part in 
anharmonic stretching vibrations can be obtained using 
an equation given by Morse and modified by Ibers 
(1959). This function includes a harmonic wave- 
number and an anharmonicity coefficient, the values of 
which are obtained conveniently from spectroscopic 
observations of X - H  and X - D  stretching vibrations of 
isotopicaUy dilute molecules (Berglund, Lindgren & 
Tegenfeldt, 1978). 

Application to the water molecule in K2C204. H20 

We have used the observed structure factors taken 
from the neutron diffraction study at 297 K by 
Sequeira, Srikanta & Chidambaram (1970) to carry 
out the refinements. Our attempt with the second-rank 
tensor approximation gave, within a standard 
deviation, the same result as obtained by Sequeira et al. 
The water molecule is on a C2 site and its geometry and 
immediate environment are shown in Fig. 4. 

The N C A  was based on a model in which the water 
molecule was allowed to vibrate in a force field 
comprising its internal force field and an external force 
field from stationary surrounding atoms. The nine 
resulting normal modes can be described approxi- 
mately as three internal, three rotational and three 
translational vibrations (Fig. 5). The details of the 
N C A  have already been described by Eriksson, 
Hussein, Berglund, Tegenfeldt & Lindgren (1979). 

From the form of the normal modes (Fig. 5) it was 
concluded that vibrations with considerable ampli- 
tudes and along arcs occur for the hydrogen nuclei in 
the bending vibration (at 1697 cm -~) and in the three 

/ x,_j.- v,L.~x,,~.801 

Fig. 4. The water molecule in K2C204.H20 viewed perpendicular 
to the molecular plane and along the twofold axis. The 
hydrogen-bond-accepting oxygen atoms belong to oxalate ions. 

rotational vibrations, twisting, wagging and rocking (at 
761, 756 and 656 cm -~, respectively). The vibration at 
99 cm -1 can be described as a translation out-of-plane 
coupled with a rotatiou around an axis parallel to the 
H - H  direction. The individual nuclei move on arcs so 
that no fundamental difference in the treatment is 
needed. The contribution to the structure factors from 
each component of motion along an arc was cal- 
culated according to (5) and used in the refinement 
program as described above. Equation (6) was also 
applied with and without the third-order term. 

Anharmonic linear motion occurs for the O - H  
stretching vibrations at 3533 and 3532 cm -~ (Fig. 5). 
We used the probability density function given by Ibers 
(1959) with the harmonic wavenumber 09 e -- 3532 
c m  - 1  and the anharmonicity coefficient 2ogex~ -- 283 
cm -1 (Eriksson, Berglund, Tegenfeldt & Lindgren, 
1979) to calculate the contributions to the structure 
factors according to (8). The u a, u b and Au values (Fig. 
3) were chosen as - 0 . 2 6 ,  0.37 and 0.01 A, respec- 
tively. A maximum was found forPk(U ) at u ~_ 0.015 A. 

The geometrical parameters as obtained from the 
refinements are listed in Table 1. Model I employs the 
conventional second-rank tensor approximation, while 
in model II we have applied all the available spectro- 
scopic information to calculate structure factors that are 

Wavenumbet Normal mode 
(cm "1) 

191 

225 

656 

756 

761 

1697 

3532 

3533 

0.24 0.24 

0.07 ~ / ~ . 0 7  

- 0 . 2 0 ~  -0"20 

-0.22 ~ 0.22 

Fig. 5. Normal modes of the water molecule in K2C204. H20. The 
displacement vectors are scaled to twice the root-mean-square 
amplitudes of vibration (in A) at 300 K. The numbers indicated 
are out-of-plane components. 
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not well described by model I. The effects of the two 
different types of motion included in model II are 
apparent from the results of the application of models 
III and IV. 

The thermal parameters obtained from the refine- 
ments with models I and II are depicted in Fig. 6. The 
ellipsoids in Fig. 6(b) thus show the influence of the 
normal vibrations not considered in the calculations 
using (5) .and (8). Table 2 gives mean-square ampli- 
tudes of vibration for models I and II. There is a 
disagreement between the values for oxygen in Table 2 
and the values given by Sequeira et al. (1970) (Table 4 
in their paper); this is due to an error in their table. 
Nevertheless, their statement that there is excellent 
agreement between neutron and X-ray (Hodgson & 
Ibers, 1969) values for the thermal parameters of the 
oxygen atom still holds. 

Discussion 

Least-squares refinements using a third-rank tensor 3, 
(Johnson, 1969) to describe the thermal vibrations are 
seldom reported in the literature. This is probably due 
to the fact that such refinements have not converged 

Table 1. The geometry o f  the water molecule in 
K 2 C 2 0 4  . H20 as refined using the different vibrational 

models (see text) 

Estimated standard deviations, which are given within parentheses, 
emerge from the diffraction experiment. 

I: Conventional refinement; calculation of structure factors accord- 
ing to II: equations (5) and (8); III: equation (8); IV: equation 
(5); V: equation (6); VI: equation (6) without third-order term. 

Model Ro_ n (A) RH_ n (A) arl_o_ H (o) 

I 0.963 (3) 1.557 (5) 107.8 (4) 
II 0.967 (2) 1-552 (4) 106.8 (3) 
III 0.943 (3) 1-523 (4) 107.8 (3) 
IV 0.988 (3) 1-586 (5) 106.8 (3) 
V 0.988 (3) 1.586 (5) 106.8 (3) 
VI 0.989 (3) 1.588 (5) 106.8 (3) 

successfully, rather than that they have not been tried. 
Our refinement of ten y values for hydrogen and four 
for oxygen in the water molecule of K2C204.H20 
resulted in large standard deviations and large corre- 
lations. The results of the refinement were not con- 
sidered meaningful. 

In this paper we have shown how explicit infor- 
mation from vibrational spectroscopy can be used to 
improve the thermal model for a water molecule, and in 
this way facilitate a more sophisticated analysis of 
diffraction-obtained geometrical and thermal param- 
eters. The simple model used for the vibrations of the 
water molecule has earlier been shown to reproduce 
experimental wavenumbers and wavenumber shifts in 
connection with isotopic substitutions (Eriksson, Hus- 
sein, Berglund, Tegenfeldt & Lindgren, 1979), and to 
explain the temperature dependence of deuteron quad- 
rupole splittings (Berglund, Eriksson, Lindgren & 
Tegenfeldt, 1979). 

The geometry of the water molecule as obtained 
from model II and shown in Table 1 does not differ 
greatly from that obtained with model I. This is purely 
coincidental, however, as can be seen from the results 
of models III  and IV. Two effects, an elongation due to 

%¢e 

(a) (b) 
Fig. 6. Thermal ellipsoids for the water molecule in K2C204. H20 

drawn at 50% probability level and viewed in two perpendicular 
directions. The figures show the result of a refinement according 
to (a) model I and (b) model II. Note: the ellipsoids in (b) do not 
include the vibrational motion that is calculated using equations 
(5) and (8) for the selected normal modes. 

Table 2. Mean-square amplitudes in t~2 for models I and II 

Cartesian displacement coordinates have been chosen so that x is parallel to the H--H direction, y is along the twofold, axis and z is 
perpendicular to the molecular plane. Estimated standard deviations from the refinements are given within parentheses. 

(xx ) 
(YY) 
(zz) 
<xy) 
(xz) 
(yx) 

Oxygen 
Oxygen model I Oxygen Hydrogen Hydrogen 
model I Hodgson & model II model I model II 

This work Ibers (1969) This work This work This work 

0.0219 (3) 0.0241 (1) 0.0219 (3) 0.0321 (3) 0.0228 (2) 
0.0248 (11) 0-0247 (8) 0.0247 (10) 0-0385 (13) 0-0237 (10) 
0.0743 (16) 0.0801 (19) 0-0322 (11) 0.0510 (15) 0.0128 (9) 
0 0 0 0.0046 (3) --0.0016 (2) 

--0.0004 (2) --0.0030 (2) --0.0003 (2) --0.0033 (2) --0.0036 (2) 
0 0 0 --0.0002 ( 1 2 )  --0.0005 (8) 
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anharmonic stretching and a contraction due to 
rotational vibrations, almost cancel for the O - H  and 
H - H  distances. For a more weakly bonded water 
molecule, for which the rotational vibrations occur at 
lower wavenumbers, the neutron-diffraction-obtained 
O - H  distance can differ by about 0.03 ,~ from the 
equilibrium position (Eriksson, Berglund, Tegenfeldt & 
Lindgren, 1979). 

In the ideal case in which all vibrations not satisfying 
the second-rank tensor approximation are instead 
described by our vibrational model, the remaining 
vibrations will be rigid translations of the water 
molecule. The associated thermal ellipsoids should thus 
be identical for the oxygen and hydrogen nuclei. 
Considering Fig. 6(b) and Table 2, the in-plane part of 
the ellipsoids could well be the result of translational 
vibrations only. However, a vibration involving some 
rotational character would seem to be necessary to 
explain the difference between the out-of-plane ampli- 
tudes for the oxygen and hydrogen nuclei. Although IR 
and Raman spectroscopic measurements show no such 
vibration other than those used in our calculations, it is 
nevertheless possible that such a vibration (or vib- 
rations) with a non-zero wavevector can exist. In 
particular, if the rotational vibration at 99 cm -1 has 
lower wavenumbers for non-zero wavevectors, and has 
roughly the same form, the result of Fig. 6(b) is the 
expected one. Also, acoustic modes are not considered 
in our simple model. 

It may also be that there are errors in the diffraction 
determination of the vibrational amplitudes. The 
accuracy of the thermal parameters obtained from 
diffraction has been questioned (see, for example, Willis 
& Pryor, 1975, § 4.7). In the case of K2C20 4. H20, the 
vibrational amplitudes obtained for non-hydrogen 
atoms from neutron (Sequeira et al., 1970) and X-ray 
diffraction (Hodgson & Ibers, 1969) are very similar, 
thus giving credibility to their claimed accuracy. 

The method presented in this paper has been 
applied with some success to the case of KECEO4.- 
H20. It is relevant to question whether the same 
treatment can be applied to a general water molecule in 
a hydrate. Several requirements have to be fulfilled. It is 
necessary for a successful normal coordinate analysis 
that extensive spectroscopic work (IR, Raman, iso- 
topic substitution, polarized radiation) is done to assign 
the vibrations. Such an assignment is naturally more 
difficult for a hydrate containing more than one type of 

water molecule in the unit cell, and for hydrates with 
low site symmetry for the water molecule. In K2CEO4.- 
H20, it was possible to assign nine vibrations 
localized to the water molecule. For hydrates con- 
taining molecules or ions with masses comparable to 
that of water (e.g. LiOH.H20),  difficulties are antici- 
pated in finding such localized vibrations at low 
wavenumbers. The application of (5) also assumes that 
no correlation exists between certain rotational and 
translational vibrations, i.e. no screw motion occurs 
(Willis & Pryor, 1975, § 6.6). 

It should finally be noted that the method need not 
be applied in its entirety; anharmonicity in the 
stretching vibrations of a water molecule can be 
considered in isolation, for example. Generally speak- 
ing, (5) and (8) can be applied to any molecule 
provided that the normal vibrations are known. This 
can sometimes be done without making a sophisticated 
normal-coordinate analysis, e.g. for X - H  stretchings, 
--CH 3 and NH 3 twistings. 

References 

BERGLUND, B., ERIKSSON, A., LINDGREN, J. & 
TEGENFELDT, J. (1979). J. Mol. Struct. 52, 113-118. 

BERGLUND, B., LINDGREN, J. & TEGENFELDT, J. (1978). J. 
Mol. Struct. 43, 169-177. 

CYVIN, S. J. (1968). Molecular Vibration and Mean-Square 
A mplitudes of Vibration. Amsterdam: Elsevier. 

ERIKSSON, A., BERGLUND, B., TEGENFELDT, J. & 
LINDGREN, J. (1979). J. Mol. Struct. 52, 107-112. 

ERIKSSON, A., HUSSEIN, M. A., BERGLUND, B., 
TEGENFELDT, J. & LINDGREN, J. (1979). J. Mol. Struct. 
52, 95-105. 

HAREL, M. & HIRSHFELD, F. L. (1975). Acta Cryst. B31, 
162-172. 

HODGSON, D. J. & IBERS, J. A. (1969). Acta Cryst. B25, 
469-477. 

IBERS, J. A. (1959). Acta Cryst. 12, 251-252. 
JOHNSON, C. K..(1969). Acta Cryst. A25, 187-194. 
LUNDGREN, J.-O. ( 1979). Report UUI C-B 13-04-04, Institute 

of Chemistry, Univ. of Uppsala. 
SCHOMAkER, V. & TRUEBLOOD, K. N. (1968). Acta Cryst. 

B24, 63-76. 
SEQUEIRA, A., SRIKANTA, S. ~1. CHIDAMBARAM, R. (1970). 

Acta Cryst. B26, 77-80. 
WILLIS, B. T. M. & PAYOR, A. W. (1975). Thermal 

Vibrations in Crystallography. Cambridge Univ. Press. 


